Multi-oriented text detection and verification in video frames and scene images
نویسندگان
چکیده
In this paper, we bring forth a novel approach of video text detection using Fourier-Laplacian filtering in the frequency domain that includes a verification technique using Hidden Markov Model (HMM). The proposed approach deals with the text region appearing not only in horizontal or vertical directions, but also in any other oblique or curved orientation in the image. Until now only a few methods have been proposed that look into curved text detection in video frames, wherein lies our novelty. In our approach, we first apply Fourier-Laplacian transform on the image followed by an ideal Laplacian-Gaussian filtering. Thereafter K-means clustering is employed to obtain the asserted text areas depending on a maximum difference map. Next, the obtained connected components (CC) are skeletonized to distinguish various text strings. Complex components are disintegrated into simpler ones according to a junction removal algorithm followed by a concatenation performed on possible combination of the disjoint skeletons to obtain the corresponding text area. Finally these text hypotheses are verified using HMM-based text/non-text classification system. False positives are thus eliminated giving us a robust text detection performance. We have tested our framework in multi-oriented text lines in four scripts, namely, English, Chinese, Devanagari and Bengali, in video frames and scene texts. The results obtained show that proposed approach surpasses existing methods on text detection.
منابع مشابه
Text Detection in Multi-Oriented Natural Scene Images
---------------------------------------------------------------------***--------------------------------------------------------------------Abstract With the growing number of digital multimedia libraries, the need to efficiently index, browse and retrieve multimedia information is increased. Text embedded in images and video frames can help to identify the image information (e.g. somebody's na...
متن کاملSIDF: A Novel Framework for Accurate Surgical Instrument Detection in Laparoscopic Video Frames
Background and Objectives: Identification of surgical instruments in laparoscopic video images has several biomedical applications. While several methods have been proposed for accurate detection of surgical instruments, the accuracy of these methods is still challenged high complexity of the laparoscopic video images. This paper introduces a Surgical Instrument Detection Framework (SIDF) for a...
متن کاملCompressed Domain Scene Change Detection Based on Transform Units Distribution in High Efficiency Video Coding Standard
Scene change detection plays an important role in a number of video applications, including video indexing, searching, browsing, semantic features extraction, and, in general, pre-processing and post-processing operations. Several scene change detection methods have been proposed in different coding standards. Most of them use fixed thresholds for the similarity metrics to determine if there wa...
متن کاملFire detection using video sequences in urban out-door environment
Nowadays automated early warning systems are essential in human life. One of these systems is fire detection which plays an important role in surveillance and security systems because the fire can spread quickly and cause great damage to an area. Traditional fire detection methods usually are based on smoke and temperature detectors (sensors). These methods cannot work properly in large space a...
متن کاملRadiant Vector Flow Method for Arbitrarily Oriented Scene Text Detection
Text detection and recognition is a hot topic for researchers in the field of image processing. It gives attention to Content based Image Retrieval community in order to fill the semantic gap between low level and high level features. Several methods have been developed for text detection and extraction that achieve reasonable accuracy for natural scene text as well as multi-oriented text. Howe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 275 شماره
صفحات -
تاریخ انتشار 2018